6 Environmental Hazards

he Environmental Hazards Element incorporates two of the mandatory elements of the General Plan—Safety and Noise. -The primary goal of this element is to minimize future loss of life, injury, and property damage resulting from natural hazards. A secondary goal is to reduce exposure to hazardous materials, noise, vibration, and other dangers or nuisances associated with the built environment. The City will adopt and implement strategies for the fulfillment of these goals in conjunction with those identified in the City of Piedmont's Local Hazard Mitigation Plan. Mandated under the Disaster Mitigation Act of 2000, and adopted by the Piedmont City Council on August 5, 2019, this document is incorporated into the City of Piedmont's Environmental Hazards Element under State Assembly Bill 2140 and will be updated periodically, as required by state and federal law. The LHMP guides hazard mitigation planning by assessing hazard risk, ensuring eligibility for federal disaster preparedness and relief funding, and providing long-term mitigation strategies to eliminate or reduce the frequency of hazard exposure. (LHMP). The LHMP for the City of Piedmont was developed in accordance with the Disaster Mitigation Act of 2000 (DMA 2000) and followed FEMA's Local Hazard Mitigation Plan guidance. The LHMP incorporates a process where hazards are identified and profiled, the people and facilities at risk are analyzed, and mitigation actions are developed to reduce or eliminate hazard risk. The implementation of these mitigation actions, which include both short and long-term strategies, involve planning, policy changes, programs, projects, and other activities. The LHMP can be found on the City's Planning & Building Department website at the following location

(https://piedmont.ca.gov/services____departments/planning___building/general_plan___other_pol_ icy_documents/hazard_mitigation_plan_).

Emergency preparedness is an important part of hazard mitigation. However, the City has independent plans and programs for emergency response that are outside the scope of the General Plan. The focus in this chapter is on prevention and mitigation. By integrating hazards into land use decisions, Piedmont can reduce the risk of catastrophic damage when disaster strikes. Accordingly, this element includes policies to limit development on unstable slopes, seismically retrofit schools and older structures, maintain "defensible" space around homes on fire-prone hillsides, provide roads that are adequate for emergency vehicles, and ensure that the city's water supply is adequate for fire-fighting.

The State Government Code (Section 65302(g)) identifies the specific hazards that must be addressed by the general plan. These include seismically-induced surface rupture, ground failure, tsunamis and seiches, dam failure, slope instability, subsidence, and liquefaction. Table 4-2, in the LHMP, identifies these hazards and details both their geographic extent and the type of risk they pose. The Government Code also requires general plans to address <u>climate change</u>, <u>wildfire</u> and flood hazards, evacuation routes, <u>peakloadpeak load</u> water supply requirements, minimum road widths, and clearances around structures. All-of these topics are covered in this chapter.

The Environmental Hazards Element also includes a proactive set of policies to address noise issues in Piedmont. Piedmont residents value their peace and quiet, and enjoy a relatively calm environment considering the city's location in the center of a major metropolitan area. Policies in this chapter strive to maintain that environment and mitigate activities and land uses that generate noise.

6 Environmental Hazards

Goals, policies, and actions in this element address the following major topics:

- Geologic hazards
- Wildfire and flooding hazards
- Hazardous materials management
- Emergency preparedness
- Noise control
- Climate change

Measuring Earthquakes

Earthquakes are measured in terms of their magnitude and intensity.

Magnitude refers to the duration of the shaking and the size of the area affected. It is typically measured with the *Richter Scale*, a logarithmic scale which indicates the amount of energy released by the earth's movement.

Intensity refers to the degree of ground shaking. While each earthquake has only one magnitude, intensity varies with location. Intensity on any given site depends on many factors, including the site's distance from the fault, the fault's orientation to the site, and local soil and groundwater conditions.

GEOLOGIC HAZARDS

Piedmont's Geology

Piedmont is located in a geologically active part of the world. The region's geology is dominated by the intersection of the Pacific and North American tectonic plates, two components of the earth's crust that are moving in opposite directions. Large earthquake faults have developed in response to the stress between the plates. When enough strain builds up along a fault line, the plates slip and an earthquake occurs.

In the Central Bay Area, most earthquakes are associated with the San Andreas, Calaveras, and Hayward Faults. The San Andreas Fault traverses San Mateo County, about 15 miles west of Piedmont. The Calaveras Fault lies on the edge of the Diablo Range, about 15 miles to the east. The main trace of the Hayward Fault runs about 0.25 miles east of Piedmont, along an alignment that roughly parallels State Highway 13. The Fault extends from Point Pinole more than 40 miles south to Milpitas.

The Hayward Fault presents the greatest threat to Piedmont, although a large earthquake on any of the region's faults could cause significant damage. The last catastrophic earthquake on the Hayward Fault occurred in 1868 and was estimated to be magnitude 7.0. Piedmont was rural at the time, but there was extensive damage in Berkeley, Oakland, San Leandro, and Hayward. The San Andreas Fault produced the devastating 1906 San Francisco earthquake (magnitude 8.0) and was associated with the 1989 Loma Prieta earthquake (magnitude 6.9-7.1). Earthquakes of Magnitude 5.0 or greater have occurred on the Calaveras Fault in 1984 (Morgan Hill) and 2007 (North San Jose).

Table 6.1 indicates the region's major faults and the earthquake probabilities for these faults. Overall, there is a 6272 percent chance that the Bay Area will experience an earthquake of magnitude 6.7 or greater between 200314 and 20432. The probability for the Hayward Fault alone is 2733 percent—the single highest risk among Bay Area faults.

Since 1972, the State of California has required that earthquake fault zones with a high potential for surface rupture be officially designated on USGS maps. These areas are known as "Special Study Zones" and are subject to geotechnical study requirements and development restrictions. The Special Studies Zone associated with the Hayward Fault extends about 300-400 feet on either side of the fault trace, which places its western boundary just east of the Piedmont city limits. There are no Special Study Zones within Piedmont.

Earthquake Risk Projection

location of the Bay Area's major faults, as well as the probability of a major quake between 2014 and 2043.

The map above indicates the location of the Bay Area's major faults, as well as the probability of a major guake between 2003 and 2032.

Table 6.1: Magnitude 6.7 EarthquakeProbabilities for the San Francisco BayArea, 2003, 20322014-2043

Source Fault	Probability of a 6.7 or Greater Quake	Maximum Credible Earthquake	
San Francisco Bay Region	62<u>72</u>%	-	
San Andreas	21<u>22</u>%	8.0	
Hayward/ Rogers Creek	27<u>33</u>%	7.5	
Calaveras	11<u>26</u>%	7.5	
Concord/Green Valley	4 <u>16</u> %	6.75	
San Gregorio	10<u>6</u>%	7.5	
Greenville	3<u>16</u>%	7.25	
Mount Diablo Thrust	3<u>16</u>%	-	
Background	14<u>13</u>%		

Source: 2002 Working Group on CaliforniaU.S. Geological Survey. 2016. Earthquake ProbabilitiesOutlook for the San Francisco Bay Region 2014–2043

Earthquake Hazards in Piedmont

Earthquakes pose a substantial danger to property and human safety. Ground shaking is typically the greatest hazard and major cause of damage. The transmission of earthquake waves can cause buildings to collapse, streets to crack, and utility lines to rupture. Strong ground shaking can also cause damage due to falling objects such as bookcases or water heaters, chemical spills, and secondary effects such as fire or explosion. Additionally, damage to water and sewer infrastructure is a primary issue during a large earthquake event affecting Piedmont, and PG&E services could be cut off, hampering communications and local emergency response capabilities.

On any given site, the degree of shaking tends depends on the magnitude of the earthquake, distance to the fault, property of the underlying soils,

building design and construction, and building materials. Shaking tends to be strongest on filled soils and in areas where soil depth and moisture content are high.

Figure 6.1 shows projected ground shaking intensity in Piedmont in the event of a magnitude 6.9 earthquake on the Hayward Fault. Such a scenario would produce very strong to violent shaking in most of the city. Significant structural damage could occur, including failure of stucco and masonry walls, collapse of chimneys and tanks, unbolted houses moving off of their foundations, and cracks in wet ground and on steep slopes.

ABAGThe Association of Bay Area Governments (ABAG) has modeled the ground shaking impacts of earthquakes along other Bay Area faults, including the San Andreas and Calaveras. A 7.2 earthquake on the San Andreas Fault would produce moderate to strong ground shaking in Piedmont, and a 6.2 quake on the Calaveras Fault would produce light to moderate shaking. Both scenarios create a high probability for structural damage in the city.

Another earthquake related hazard is liquefaction. This is the conversion of water-saturated soils, especially landfill, from a solid state to a liquid state. Structures on liquefaction-prone soils can rotate and slowly sink during a major quake. Areas of liquefaction susceptibility exist throughout the entire Piedmont area, but liquefaction hazard maps prepared by ABAG indicate only one high-risk area, located along an old streambed that runs beneath Grand Avenue. Despite this risk, there have been no disaster declarations in Alameda County nor any identified past issues of liquefaction within Piedmont.

A number of other earthquake hazards are present in the East Bay, although not in Piedmont itself. For example, surface rupture is a serious hazard in the Montclair District of Oakland, since it is bisected by the Hayward Fault. Differential settlement and lateral spreading are hazards along the Bay shoreline and in large areas of Oakland, Alameda, Berkeley, and Emeryville where tidal flats have been filled to accommodate development. Piedmont is also not vulnerable to tsunamis, as the city is located two miles from the shoreline at an elevation of over 25 feet.

Additional earthquake-related hazards, including landslides and dam failure, are addressed below and later in this chapter. This is to be expected.

A magnitude 6.9 earthquake on the **Hayward Fault would** produce very strong to violent shaking in most of the city. Significant structural damage could occur, including failure of stucco and masonry walls, collapse of chimneys and tanks, unbolted houses moving off of their foundations, and cracks in wet ground and on steep slopes.

Figure 6-1: Groundshaking and Liquefaction Potential (New Map)

Landslide Hazards in Piedmont

Landslides are the rapid movement of soil, rock, or mud down a slope. They may be triggered by natural causes such as earthquakes and heavy rain, or man-made causes such as broken water mains, improperly constructed roads, and slopes that are undercut or overloaded during construction.

Landslides are relatively common in the East Bay Hills, especially during high-intensity, long duration winter rains. They generally occur along the sides of ravines where surface water and groundwater are concentrated, or on deep-seated bedrock and steep slopes with weak or shallow soils. When such soil becomes saturated with water, its weight increases and resistant forces are reduced. The risk of landslides increases where certain conditions are present, such as hillsides that have been denuded by fire.

The risk of landslides generally corresponds to slope, with the highest hazards in Moraga Canyon, along Indian Gulch, in Piedmont Park, in the Wildwood Gardens area, along Park Boulevard, and in the Somerset Road area along the Oakland border. Maps from the US Geological Survey illustrate the potential for mudslides (debris flows) in the city. The areas of greatest hazard are steep hillsides above the city's creeks.

Landslide hazards in the rest of the city are generally low, as most of Piedmont is set on sandstone and Franciscan shale formations. However, there is still the potential for slope instability resulting from improper construction and poor drainage. These hazards are somewhat greater in the eastern part of the city due to the steeper slopes, expansive clay soils, and weathered bedrock.

Mitigating Geologic Hazards

There is no way to eliminate geologic hazards completely. However, the potential for damage can be substantially reduced through construction methods and materials. A majority of buildings in Piedmont are one- and two-story early to mid-20th century wood-frame houses. While such structures generally perform well in an earthquake, they pre-date the current seismic requirements of the Uniform Building Code. Certain types of construction, such as homes that are not bolted to their foundations or homes with living areas over crawl spaces without substantial lateral strength, are more vulnerable than others. Tall brick chimneys and unrestrained water heaters are also a source of potential damage.

There is no way to eliminate geologic hazards completely. However, the potential for damage can be substantially reduced through construction methods and materials.

Measure E

In March 2006, Piedmont voters approved a bond measure which authorized the Piedmont Unified School District to sell up to \$56 million in general obligation bonds to seismically retrofit buildings on its five campuses.

The funds are beingwere used to modernize and strengthen these pre-1990 school structures that haved not yet been brought up to current standards. Although these structures met the seismic standards in place at the time of their construction, a geotechnical evaluation determined they could pose a threat to life and property in the event of a major quake on the Hayward Fault. One of the first major projects is the reconstruction of Havens Elementary School. Students are attending classes in temporary portables while the new school is constructed.Havens Over the last 50 years, many Piedmont residences have been retrofitted with shear walls, cross-bracing, and foundation reinforcements. Structural hazards in the city are also somewhat reduced due to the stability of the soil, the absence of large multi-family buildings, the relatively small number of commercial buildings, and the limited number of structures where large numbers of people congregate. Piedmont does not have "tilt-up" structures, soft-story buildings (apartments with tuck-under parking), mid-rise or highrise buildings, elevated tanks, or unreinforced masonry buildings.

All construction and rehabilitation projects in Piedmont must conform to building codes which take seismic forces into account. The Building Code assigns a seismic design category (SDC) to each type of structure based on its occupancy, soil profile, acceleration parameters, and other factors. The SDC affects the type of structure that may be developed on a given site, as well <u>as</u> its design, height, and detail requirements.

In addition to this seismic retrofitting, the City has begun coordination with EBMUD and PG&E to retrofit water, sewer, and gas lines to minimize the severe disruption that could occur in a severe geologic event. EBMUD is upgrading the entirety of its East Bay water storage and conveyance system to minimize risks to bolster fire fighting capacity and secure the drinking water supply, and the City of Piedmont is exploring the undergrounding of electric lines.

Piedmont also requires a soils report for development on sites with slopes exceeding 20 percent, and on any site—regardless of slope—for a new residence. The Municipal Code also includes subdivision regulations that require soil and geologic reports with any application for a tentative subdivision map. The Code includes requirements for grading, drainage, and erosion control to reduce the risk of landslides and slope failure.

Piedmont is also working proactively to reduce seismic hazards in public assembly places, especially schools (see text box at left). The City is also coordinating with EBMUD and PG&E to retrofit water, sewer, and gas lines to minimize the service disruption that could occur after an earthquake. EBMUD is upgrading its entire East Bay water storage and conveyance system, improving post-earthquake firefighting capacity, and ensuring the reliability of the drinking water supply. For its part, the City of Piedmont is exploring undergrounding of electric lines, in part to reduce hazards and outages from falling utility lines and power poles. The City's sewer replacement program will also will help reduce the risk of failure during a major earthquake.

Peak Load Water Demand

The City of Piedmont's main water supplies are primarily from surface water sources and supplemental groundwater supply as well as local runoff stored in terminal reservoirs that are managed by East Bay Municipal Utility District (EBMUD). The surface water supply sources include the Pardee and Camanche Reservoirs in the eastern Sierra Nevada Mountains located east of Stockton. The Pardee and Camanche Reservoir water supplies are transferred through the Pardee Tunnel, the Mokelumne Aqueducts, and the Lafayette Aqueducts. The water is stored in terminal reservoirs including Briones, USL, San Pablo, Chabot, and Lafayette Terminal Reservoirs. EBMUD also manages the groundwater supply for the East Bay Plain Subbasin. Demand for water in the EBMUD's overall service area is primarily for municipal and industrial (M&I) uses which includes residential, commercial, institutional, industrial and irrigation.

The Pardee Reservoir includes 209,950-acre feet and the Camanche Reservoir includes 431,500-acre feet that has been licensed to EBMUD. Over the next 20 years, projected increase in water demand primarily results from expected increased densities in existing developed urban areas, as formerly lower consumption land uses are replaced with more intensive mixed uses and other developments.

The City of Piedmont imports its water from EBMUD, where 90 percent of the water comes from the Mokelumne River, delivered through the Mokelumne Aqueduct from the reservoirs previously discussed. The other 10 percent comes from local watersheds in the East Bay. The EBMUD Water Shortage Contingency Plan (WSCP) provides a breakdown of water supply and demand scenarios for normal water year, single dry year, and droughts lasting at least 5 years.

EBMUD's Urban Water Management Plan 2020 (UWMP), which is required to be updated every five years, concludes that EBMUD has, and will have, adequate water supplies to serve existing and projected demand during normal and wet years, but that deficits are projected for multi-year droughts. The EBMUD UWMP can be found on the EBMUD's website at this location (https://www.ebmud.com/water/about-your-water/water-supply/urban-watermanagement-plan). During multi-year droughts, EBMUD may require significant customer water use reductions and may also need to acquire supplemental supplies to meet customer demand. Potential supplemental water supply projects that could be implemented to meet projected long-term water supplemental need during multi-year drought periods are in the planning phases. Supplemental supply will also be needed to reduce the degree of rationing and to meet the need for water in drought years.

WILDFIRE

Wildfire is part of California's natural ecology. However, its danger and cost have increased as fire-prone areas across the state have been developed. and the impacts of climate change have exacerbated wildfire risk and intensity. Homes have been built on steep scrub-covered hillsides throughout the East Bay hills, creating an interface between urban uses and open space that has increased the risk of fire. Over the years, fire suppression and invasive plants have contributed to fuel build-up and increased the risk of more catastrophic fire events. With climate change, changes in precipitation and temperature will increase the frequency and intensity of wildfires especially during times of exacerbated drought conditions that increase the flammability of vegetation.

Parts There have been no recorded wildfire events in Piedmont. However, parts of Piedmont have the same landscape character as the area burned in the devastating 1991 Oakland Hills Fire. The 1991 Fire destroyed more than 3,000 homes in Oakland and Berkeley, caused 23 deaths, burned 2,000 acres, and resulted in \$3 billion in property damage. -Although there were no casualties or damage in Piedmont, the fire stopped at the city limits. The Piedmont LHMP identified additional fires that occurred in Alameda County, outside city limits, in 1962 (state declared disaster) and 1970 (federally declared disaster).

Figure 6-2 illustrates wildfire severity in Piedmont based on data provided by the California Department of Forestry and Fire Prevention. Over a third of the City's residential area is located in a moderate to very high hazard severity zone. The highest hazards are in the eastern half of the city, or just outside, generally corresponding (CAL FIRE). The most recent CAL FIRE Fire Hazard Severity Zone maps can be found on the Office of the State Fire Marshall Fire Hazard Severity Zones (FHSZ) website, located at https://osfm.fire.ca.gov/divisions/community-wildfire-preparedness-and-mitigation/wildfire-preparedness/fire-hazard-severity-zones/. A large section of the southeastern portion of the City of Piedmont is within a very high fire hazard severity zone. This portion of Piedmont corresponds to the areas of hilliest terrain, densest vegetation, and lowest density development. The remainder of Citythe city is threatened by the effects of wildfire due to higher density of homes with substandard clearances, street widths, and previously under-enforced vegetation management practices.

Moraga Canyon, which is located outside the city to the northeast, has emergency access issues which could limit adequate emergency response during a wildfire. The Piedmont Fire Department is responsible for fire protection within the city. Moraga Canyon is within the State Responsibility Area and therefore CAL FIRE is responsible for fire protection in that area.

The Piedmont LHMP identifies critical facility points as including Essential Service Facilities, At Risk Population Facilities, and Hazardous Materials Facilities.

- Essential Service Facilities include public safety, emergency response, emergency medical, designated emergency shelters, communications, public utility plant facilities and equipment, and government operations.
- At Risk Population Facilities include pre-schools, public and private primary and secondary schools, before and after school care centers with 12 or more students, daycare centers with 12 or more children, group homes, and assisted living residential or congregate care facilities with 12 or more residents.
- Hazardous Materials Facilities include, without limitation, any facility that could, if adversely impacted, release of hazardous material(s) in sufficient amounts during a hazard event that would create harm to people, the environment and property.

A list of critical facilities can be found in the Piedmont LHMP in Table 4-40. Critical facilities that are located in the Very High Fire Hazard Severity Zone, in eastern portions of Piedmont, include two schools: The Renaissance International School and Corpus Christi School, as shown in Figure 6-2. Although only two critical facilities are located in the Very High Fire Hazard Severity Zone, the entire city is designated a wildland urban interface (WUI) pursuant to Section R337.2 of the Piedmont City Code. The WUI is a zone of transition between open space and residential or commercial development. These areas are particularly at risk of damage from wildfire because they often have significant quantities of vegetative fuels for fire near building and structures. The LHMP includes invasive exotic plant species as an exacerbation of wildfire risk in the area. Critical facilities located in the WUI include essential service facilities (e.g., emergency medical and emergency shelter), at risk population facilities (e.g., schools and senior living facilities), and hazardous materials facilities. All hazardous waste sites in the City are closed.

Figure 6-3 shows land use designations in Very High Fire Hazard Severity Zones. Most of the area in the Very High Fire Hazard Severity Zone consists

of low density residential land use with small areas designated Parks. Recreation, and Open Space and Estate Residential.

Figure 6-2: Very High Wildfire Severity and Critical Facilities in Piedmont (New Map)

Defensible Space

In the aftermath of the 1991 Oakland Hills Fire, Piedmont and surrounding communities have taken important steps to control the hazardous conditions that contribute to wildfire risk. Probably the most critical step is to maintain "defensible space" around each residence to reduce the risk of structure loss.

Piedmont property owners are required to keep weeds and grass to within two inches of the ground, keep vacant lots cleared of debris, remove dead branches from trees and shrubs, remove piles of trimmings and trash, and keep roofs free of fallen branches. Homeowners on steep hillside lots must maintain a 100-foot buffer around any structure free of dry grass, brush and dead leaves. The requirement is 30 feet in nonhillside settings.

Other measures to reduce hazards include requirements for noncombustible roofing, figuel breaks, one-hour rated exterior walls, spark arresters on chimneys, sufficient clearance between structures, and firebreaks. Piedmont also requires fire sprinklers in new residential construction.

Vegetation Management

Fuel reduction and vegetation management are high priorities in Piedmont. The Piedmont Fire Department enforces weed abatement regulations as outlined in City Ordinance #505, Chapter 6.1. and vegetation management standards described in Chapter 8. These regulations aim to reduce the loss of life and property by controlling fuels that could cause or support wildfire (see text box). Of additional concern is the risk of localized flooding due to the accumulation of vegetation and leaves. Piedmont property owners are required to keep weeds and grass to within two inches of the ground, keep vacant lots cleared of debris, remove dead branches from trees and shrubs, remove piles of trimmings and trash, and keep roofs free of fallen branches. The Fire Department is applying the three Hazardous Vegetation Zones recommended by NFPA and mandated by CalfireCAL FIRE. Homeowners are mandated to maintain a 100-foot buffer around any structure free of tall dry grass, brush and dead leaves. Within 30 feet of a structure, owners will need to keep trees limbed up six feet from the ground and away from houses. Closer than five feet requires vegetation to be aggressively maintained in the "non-ignition zone"..."

Piedmont also participates in the Alameda County Operational Area Emergency Management Organization, part of the standard emergency management system established after the Oakland Hills Fire. -Its agreement with the organization ensures mutual aid assistance during emergencies, cooperative training and exercise, and sharing of resources. -The city has Mutual Response Area (MRA) agreements with Oakland during the fire season. -Piedmont also serves on anparticipates in Operational Area Council that reviewsworking groups to advise and approvesreview countywide disaster preparedness policies and programs. -plans. The Piedmont Fire Department also participates in the Alameda County Community Wildfire Protection Plan (CWPP), which includes recommended strategies for vegetation management. The Alameda County CWPP can be found at https://static1.squarespace.com/static/637666524e88c826676ef6a3/t/63fa9f6 abeb7fa049a659a80/1677369195776/CWPP+--+Alameda+County+CWPP+Update_3_2015.pdf.

PeakloadWildfire Smoke

Wildfires have increased throughout the state and are expected to continue to increase. Smoke from wildfires can travel many miles beyond the perimeter of the fire, meaning that increased wildfires throughout the region will lead to increased exposure to wildfire smoke for Piedmont residents. Wildfire smoke is a mixture of gaseous pollutants, hazardous air pollutants, water vapor, and fine particulate matter, which is made up of very small particles. Fine particulate

matter is the main component of wildfire smoke and the principal threat to public health. Exposure to fine particulate matter of up to 24-hours has been associated with premature mortality, increased hospital admissions for heart or lung issues, acute and chronic bronchitis, asthma attacks, emergency room visits, respiratory symptoms, and restricted activity days. The Bay Area Air Quality Management District (BAAQMD) provides local air quality monitoring and forecast throughout the Bay Area. BAAQMD's Spare the Air Program alerts residents when air quality is forecast to be unhealthy. Piedmont is in the Coast & Central Bay air quality zone with the nearest air district station in West Oakland.

Peak load Water Supply Requirements

PeakloadPeak load water supply requirements refer to the water supply and pressure that would be needed to fight a major wildfire in the city. These requirements are met in almost all of Piedmont. The Requa Place / Wildwood Gardens area has been identified as having less than optimal water volume, and could be targeted for future improvements. EBMUD is the City's water supplier and meets water supply requirements for the city.

Minimum Road Widths

Roads must be sufficiently wide for emergency vehicles to reach the site of a fire or other emergency. Engineering standards in most California cities generally require at least 10-12 feet of lane width and two lanes in each direction on all streets (20-24 feet curb to curb). As noted in the Transportation Element, some of the city's roads do not meet these standards. Because widening such roads is not feasible in most instances, the City <u>implementsis considering implementing</u> parking restrictions and other requirements to keep such roads passable. Piedmont also maintains overhead clearances to keep local streets free of low hanging branches and other obstructions.

Fire safety considerations have influenced the placement of fire hydrants, the prioritization of capital improvements, and the approval process for new homes. Applications for new homes are typically reviewed by the Piedmont Fire Department to ensure adequate access and water supply.

Flooding could potentially result from the failure of Tyson Lake dam or the collapse of East Bay Municipal Utility District reservoir tanks in the hills above Piedmont. The probability of dam or tank failure is extremely low. Nonetheless, a worst case scenario Hayward Fault earthquake could produce this scenario.

FLOODING

Stream Overflow and Storm-Related Flooding

Maps published by the Federal Emergency Management Agency (FEMA) indicate the extent of flooding in the event of a 100-year storm (e.g., the "100-year flood plain"). Such a storm is defined as having a one percent chance of occurring in any given year. The extent of flooding is determined based on engineering and hydrologic studies that consider the capacity of streams, the extent of paved surfaces within watersheds, constraints to water movement (such as narrow culverts), and other factors.

There are no FEMA-designated flood plains in Piedmont. The city's creeks carry relatively small volumes of runoff. Heavy rains may produce ponding around storm drains, but these events are short in duration and do not typically cause property damage. As climate change unfolds, extreme precipitation events in the city will become more significant, which could lead to increased potential for flooding. Piedmont's risk as it pertains to storm events is largely limited to landslide formation, and all previous landslide events in Piedmont's history have occurred during periods of substantial rainfall. Climate change impacts may increase the frequency and intensity of landslides in the city as substantial rainfall events are exacerbated by climate change. The City adopted a flood plain ordinance in 2006. The ordinance's floodplain management activities apply to existing and new development areas, implementing flood protection measures for structures and the maintenance of drainage systems in compliance with the NFIP (National Flood Insurance Program).

Dam Failure

Flooding could potentially result from the failure of Tyson Lake dam or the collapse of East Bay Municipal Utility District reservoir tanks in the hills above Piedmont. Estates Dam and Lake Temescal present additional risks, though only the Tyson Lake Dam inundation area intersects the <u>Ccity</u>. The probability of dam or tank failure is extremely low. Nonetheless, a worst case scenario Hayward Fault earthquake could produce this scenario. Dam inundation areas are shown in Figure 6-3.-<u>4</u>.

Tyson Lake and its associated dam are below the size threshold requiring monitoring by the State Department of Water Resources Division of Dam Safety. The dam is periodically inspected on behalf of the Tyson Lake Homeowners Association. In the event of dam failure, water would cross

Hampton Field Park and then follow LaSalle to Indian Gulch, potentially damaging homes in its path.

The probability of flooding from EBMUD tanks is greatly diminished by the fact that the Piedmont Reservoir (on Blair Avenue) is emptyhas been drained and decommissioned, and the Dingee Reservoir is being decommissioned. has been drained and decommissioned. At the Piedmont Dam, the open cut dam was removed; and containment structures to replace the old dam are expected to be installed in next 10-year period, but currently no water is held in the Piedmont dam containment area. Moreover, EBMUD Reservoir #1 on Estates Drive is planned for replacementhas been replaced with two reinforced concrete water tanks. In the event the Estates Reservoir (or the replacement tanks) collapsed, water would follow the streambed between Glen Alpine and Sea View, cross Hampton Road, and follow St. James to Indian Gulch. In the event the future Piedmont Reservoir tank collapsed, water would flow into Moraga Canyon.

Figure 6-4: Dam Inundation (New Map)

CLIMATE CHANGE EFFECTS

Climate change is the distinct change in measures of weather patterns over a long period of time, ranging from decades to millions of years. Human induced climate change has been rapidly warming the Earth at rates unprecedented in the last 1,000 years. Since industrialization began in the 19th century, the burning of fossil fuels (coal, oil, and natural gas) at escalating quantities has released vast amounts of carbon dioxide and other greenhouse gases responsible for trapping heat in the atmosphere, increasing the average temperature of the Earth. Secondary impacts include changes in precipitation patterns, the global water cycle, melting glaciers and ice caps, and rising sea levels. According to the Intergovernmental Panel on Climate Change (IPCC), climate change will "is "already affecting every region on Earth…[and will] increase the likelihood of severe, pervasive and irreversible impacts for people and ecosystems" if unchecked.

Climate change adaptation is a key priority of the State of California. The 2018 State of California Multi-Hazard Mitigation Plan statedAdaptation Planning Guide states that climate change is already affecting California. Sea levels have already risen by as much as sevenover eight inches alongin the California coastBay Area over the last century, (CEC, 2019). This has led to increasing erosion and pressure on the state's infrastructure, water supplies, and natural resources. The State has also seen increased average temperatures, more extreme hot days, fewer cold nights, a lengthening of the growing season, shifts in the water cycle with less winter precipitation falling as snow, and earlier runoff of both snowmelt and rainwater in the year. In addition to changes in average temperatures, sea level, and precipitation patterns, the intensity of extreme weather events is also changing.

The 2017 Climate Adaptation Plan 2.0 for the City noted that in 2015, the three largest sources of GHG emissions in Piedmont were building electricity use, natural gas use for space and water heating, and petroleum fueled personal vehicle use. In Piedmont at large, the HPMC noted that temperatures have been warming. The City is seeing more applications for installation of air conditioners. The biggest issues related to climate change in the City play into drought conditions and dry vegetation creating a bigger wildfire risk. Urban trees are also being affected by climate change conditions, as climate conditions cause them to dry out and become more vulnerable to falling over during storm events. The HMPC also noted the climate change in Piedmont creates more intense rain events, and affects the numbers, magnitude, and severity of flooding and land movement hazards, such as localized landslides. The City of Piedmont is already experiencing climate change impacts on local hazards including extreme heat, extreme precipitation events,

prolonged drought conditions, wildfires, and landslides. Extreme heat events are projected to increase between 9 and 17 days per year. Meanwhile, average annual precipitation is not expected to change much; however, the variability of rainfall is expected to result in less rain events overall but more extreme precipitation events. This increases the likelihood of landslide formation and flooding. Less precipitation events overall and for a prolonged period may lead to increasingly more intense dry spells. Drier conditions may present exacerbated wildfire conditions and lead to more frequent and destructive wildfire events. Climate change is projected to worsen hazards in the city and the city plans to adapt to these changing circumstances.

HAZARDOUS MATERIALS

Hazardous materials include substances that are flammable, corrosive, explosive, radioactive, infectious, thermally unstable, and poisonous. Although such substances are typically associated with industrial land uses, they may also be found at gas stations, dry cleaners, medical offices, public buildings, and many retail and office uses. Hazardous materials are also used in most households, and include cleaning solvents, paint, motor oil, pesticides, plastics, and common household chemicals. Common building materials and appliances may also contain substances such as asbestos, lead, and mercury. Naturally occurring hazards such as mold also may be an issue in some structures.

The storage, handling, transport, and disposal of hazardous materials can create health and safety issues. All Piedmont firefighters receive "first responder" training to respond to spills and accidents. The Fire Department also implements state and federal programs aimed at reducing exposure to hazardous materials.

More recently, the disposal of electronic waste such as computers, televisions, and fluorescent lamps has become a concern. The City of Piedmont implements programs to reduce these hazards, including e-waste collection, battery recycling, and stormwater controls. Household hazardous waste disposal centers have been established in Oakland and Hayward. Information on the location and hours of operation of these centers has been provided to each Piedmont household.

The State Department of Toxic Substances Control (DTSC) maintains data bases indicating permitted hazardous material sites in California, as well as clean-up sites and other sites where corrective actions have occurred. No

clean-up sites have been identified in Piedmont. DTSC also maintains inventories of leaking underground fuel tanks. Two sites are noted in Piedmont, both associated with gas stations- (see Figure 6-4). Groundwater quality at these sites is monitored on an ongoing basis, and only one is located in a CGS Earthquake Induced Landslide Zone.

The City maintains five large emergency supply containers, sells 32-gallon household disaster kits with essential supplies, and operates a Community Emergency Response Training (CERT) program to help residents plan for disasters and disaster recovery.

The City maintains fivelarge emergency supplycontainers, sells 32-gallon householddisaster kits withessential supplies, andoperates a CommunityEmergency ResponseTraining (CERT)program to helpresidents plan fordisasters and disaster

EMERGENCY PREPAREDNESS

Piedmont's emergency preparedness program is coordinated through the Police, Fire, and Public Works Departments, in conjunction with the City Clerk and City Administrator. Chapter 5 of the Municipal Code establishes provisions for disasters and emergencies, including the creation of a Disaster Council comprised of the Mayor, Vice-Mayor, City Administrator, emergency service providers, and other individuals who may be appointed by the Council. The <u>MayorCity Administrator</u> is designated as the Director of Emergency Services. The Disaster Council is responsible for developing the city's emergency operations plan (see text box, facing page). <u>There is no area</u> within Piedmont that lacks access to emergency services.

The City maintains five large emergency supply containers, sells 32 gallon household disaster kits with essential supplies, and operates a Community Emergency Response Training (CERT) program to help residents plan for disasters and disaster recovery. Piedmont has prepared an emergency preparedness video in cooperation with KCOM, mailed emergency preparedness brochures to Piedmont residents, and trained Fire Department personnel to provide CERT<u>neighborhood disaster</u> training for residents. The City also conducts periodic drills and training exercises, holds annual "disaster days," and participates in multi-jurisdictional and multi-agency exercises. The training covers not only earthquake and fire response, but also acts of terrorism and other types of disasters.

Piedmont residents may also participate in emergency preparedness sponsored by the City of Oakland, including CORE (Citizens of Oakland Respond to Emergencies) training programs. CORE includes training in disaster response, light rescue, shelter management, first aid, neighborhood organization, communication, and personal readiness.

A list of facility types can be found in the Piedmont LHMP in Table 4-40 for more information about each of the facilities under three categories. These facilities are shown in Figure 6-6.

Evacuation

Evacuation routes are used to move residents out of the impacted areas before or during a disaster or hazard event. Piedmont's major evacuation routes include:

- Moraga Avenue to State Highway 13 or Pleasant Valley Avenue
- Oakland Avenue to Grand Avenue or Bayo Vista Avenue
- Crocker Avenue to Mandana Avenue
- Hampton Road to Estates Drive onto Park Boulevard
- LaSalle Avenue to Mountain Boulevard
- Wildwood Avenue to Winsor Avenue or Grand Avenue
- Blair Avenue to Harbord Drive

While the major routes listed above can be used to support evacuation in some scenarios, evacuation routes will vary dependent on the type and location of each hazard incident.

The City's General Plan Safety Element, in accordance with California Government Code Section 65302(g), must identify residential neighborhoods that have fewer than two emergency evacuation routes. There are currently no single-access residential neighborhoods in Piedmont, however evacuation is still a constraint because the road widths are substandard, as discussed in the Wildfire section.

Industry-wide evacuation planning practices are evolving due to recent tragedies. Previous plans consisted of robust evacuation preparation with predesignated routes. These wildfire-_initiated evacuations still resulted in fatalities, demonstrating the need for additional scrutiny and innovation. One fundamental paradigm has become evident; fire does not recognize jurisdictional boundaries. The City-is-collaborating, in collaboration with Alameda County, and the other local cities and the technology industry to create a user interfacefire agencies, has implemented Zonehaven, an online mapping platform that can assessprovides real-time updates and recommend evacuation solutions in real-timeinformation when needed. Primary and secondary evacuation routes will be recommended and initiated in accordance with the Fire Department's "KnowTwoKnow Two Ways Out" motto, representing a commitment to flexibility and accessibility in the face of hazard events. The public will be automatically alerted on various platforms with advisory messaging.

Piedmont's Emergency Preparedness Plan

Piedmont firefighters respond to a nazmat spili

Piedmont's emergency plan is formally known as the Multi-hazard Functional Plan (MHFP). It deals with both wartime emergencies and peacetime emergencies, such as earthquakes, fires, floods, dam failure, major accidents, hazardous material spills, storms, epidemics, critical pollution, and civil disturbances.

The purpose of the Plan is to:

- Provide a basis for the conduct and coordination of operations and the management of critical resources during emergencies;
- Make widely known the authority, responsibilities, functions, and operations of civil government during emergencies;
- Provide a means of incorporating into the City's emergency organization any non-governmental agencies and organizations having the resources necessary to meet unforeseen needs; and
- Establish emergency disaster containers with medical supplies, shelter, water, food, rescue, and communications equipment.

The MHFP becomes operative if there is a state of war, a proclamation of a state of emergency by the Governor, or an order of the Mayor, Council, or City Administrator.

One of the objectives of the MHFP is to maintain a system of emergency supply

Piedmont's Emergency Preparedness Plan

Piedmont firefighters respond to a hazmat spill

Piedmont's emergency plan is formally known as the Emergency Operations Plan (EOP). It is an "All Hazards" Plan designated to outline the response structure of all hazards, such as earthquakes, fires, floods, dam failure, major accidents, hazardous material spills, storms, epidemics, critical pollution, and civil disturbances.

The purpose of the Plan is to:

- Provide a basis for the conduct and coordination of operations and the management of critical resources during emergencies.
- Make widely known the authority, responsibilities, functions, and operations of civil government during emergencies.
- Provide a means of incorporating into the City's emergency organization any non-governmental agencies and organizations having the resources necessary to meet unforeseen needs; and

NOISE

Noise is an environmental hazard with the potential to substantially impact human health and well-being. It can interfere with sleep, disrupt communication and relaxation, and even have harmful physical effects such as hearing loss. In a relatively quiet residential city like Piedmont, even small increases in noise may be perceptible. It is therefore important to maintain standards which retain the city's peaceful environment and mitigate potential noise sources.

Noise Sources

The primary source of noise in Piedmont is vehicular traffic. The noise level at any given location depends on a number of factors, including topography and proximity to major arterial or collector streets. Ambient noise in the western half of the city tends to be higher than the eastern half, given the greater density, proximity to the I-580 freeway, presence of schools and other non-residential uses, and less extensive tree cover.

Given the quiet character of the city, domestic noise sources are a greater concern in Piedmont than they are-might be in other cities. Noise from sporting events at local parks and school playgrounds, leaf blowers and gardening equipment, private parties, and construction is a concern in some neighborhoods. Noise from air conditioning units, pool and spa filter systems, exhaust systems, air compressors, wireless equipment cabinets, pumps, and other mechanical equipment also may be an issue. Such noise sources are regulated by the Piedmont Municipal Code and the Building Code. Acoustical studies may be required when new sources of noise are introduced.

Section 12.8 of the City Code declares that loud, unnecessary, and unusual noise is a nuisance and is unlawful. The criteria for determining whether a nuisance exists considers includes the ambient noise level, the sound level of the objectionable noise, the intensity of the noise, whether the noise is continuous or intermittent, the duration and tonal content of the noise, the proximity of the noise to sleeping facilities, the zoning of the area, and the nature of the source. The Code specifically prohibits construction noise between 6:00 PM to 8:00 AM seven days a week, extending an extra hour (to 9:00 AM) on Sunday mornings. In addition, Chapter 5 of the City Code requires machinery that generates perceptible noise to include mitigating equipment which reduces the sound at the edge of the property to no more than 50 decibels.

Measuring Noise

Three factors must be taken into consideration when measuring noise:

- (a) the magnitude of the sound
- (b) the frequency of the sound
- (c) the variation in sound level over time.

Sound is typically measured using decibels (dB). Decibels are measured on a logarithmic scale, which means that each increase of 10 dB is equivalent to a doubling in loudness. The measurements are usually taken on an "A-weighted" scale that filters out very low and very high frequencies.

Noise levels are usually expressed with an indication of the duration of the measurement period. For longer periods, the measurement reflects the average noise level over the period. This accounts for the variations in sound levels that occur during the day. For instance, a fire truck with blaring sirens may produce a sustained noise level of 90 dB during the 15 seconds it passes by. The average noise level for an hour at this location would be much lower, since this noise level is not sustained the entire time. A single measure called the equivalent sound level or L_{eq} is used to describe average noise over a specified time period.

Noise measurements also make adjustments to reflect the greater sensitivity of people to night-time noise. The term Community Noise Equivalent Level (CNEL) is used to describe the average noise level during a 24-hour period, with a penalty of 5 dB added to sound levels between 7 and 10 PM, and a penalty of 10 dB added to sound levels between 10 PM and 7 AM. The term Day-Night Average Level (Ldn) is similar but only includes the 10 dB penalty for 10 PM – 7 AM noise.

The term "ambient noise" is used to describe the composite noise from all sources near and far—in other words, the characteristic noise environment at a given location. The US Environmental Protection Agency suggests an ambient exterior noise goal of 55 dB L_{dn} in residential areas. The US Department of Housing and Urban Development's minimum exterior standard is 65 dB L_{dn}. Most local governments use 60 dB L_{dn} as the limit for exterior noise exposure in residential areas. This corresponds to the state requirement that all new housing with noise levels exceeding this limit be insulated.

In general, increases in noise of less than 3 dB L_{dn} are not perceptible. A 5 dB increase can trigger a noticeable change is sometimes used as threshold to identify a "significant" noise impact under the California Environmental Quality Act.

How Loud Was That?

Source	Sound in decibels
Civil Defense Siren from 100 feet away	130
Jet takeoff from 200 feet away	120
Jackhammer from 50 feet away	110
Pile driver or Rock concert	100
Ambulance siren from 100 feet away	90
Pneumatic drill at 50 feet away Power mower from 3 feet away Garbage disposal	80
Freeway from 100 feet away	70
Vacuum cleaner from 10 feet away	60
Washing machine Light traffic from 100 feet away	50
Typical living room	40
Quiet bedroom Whisper	30
Recording Studio	20
Threshold of Hearing	10
	0

Source: Illingworth and Rodkin, 2007

Noise Levels in Piedmont

Table 6-2 shows short-term and long-term noise measurements at seven locations in Piedmont in June 2007 (see text box on the previous page for an explanation of how noise is measured). Figure 6-47 indicates noise contours in Piedmont. The contour lines follow the highest volume traffic arteries in narrow bands. Contours in the range of 65 dBA L_{dn} run along Grand, Moraga, and Highland Avenues and along Park Boulevard. Contours in the range of 60 dBA L_{dn} run along Oakland and Linda Avenues. An area with ambient noise levels in the vicinity of 60 dBA L_{dn} exists around the Piedmont Civic Center.

Elsewhere in Piedmont, ambient noise levels are generally below 60 dBA L_{dn} and in most cases below 50 dBA L_{dn} . Noise levels diminish fairly dramatically away from major streets. This is due to both the normal reduction in noise level with distance from the source, and the absorption of noise by homes and trees adjacent to these streets. The hilly terrain and wooded character of the city provide additional noise shielding.

Noise levels vary with time of day, which is to be expected given the influence of traffic and other noise-producing activities. For example, on Moraga Avenue, noise levels are 66 dB L_{eq} during the afternoon rush hour, but drop to 49 dB L_{eq} in the middle of the night. Noise levels are highest on Grand Avenue, running as high as 76 dB L_{eq} during the morning and evening rush hours and dropping to 60 dB L_{eq} at 2 AM. By contrast, the noise monitor placed on Trestle Glen Drive recorded daytime levels of about 55-60 dB L_{eq} and nighttime levels of 40-45 dB L_{eq} .

Table 6-3 compares the noise measurements taken in June 2007 with those taken in June 1994 at the same locations. In general, the 2007 data show less variation than the 1994 data. Noise levels in 2007 were lower at the Oakland Avenue, Highland Avenue, Magnolia Avenue, and Linda Avenue locations, and higher at the Grand Avenue and Trestle Glen locations. The most significant increase was on Grand Avenue, which saw a 6 dBA rise between 1994 and 2007.

Major changes in the noise environment are not anticipated during the timeframe of this General Plan. The contours shown in Figure 6-47 are expected to remain constant and should be representative of noise conditions in the Plan's horizon year of 2025. A very slight increase in noise could occur along Grand Avenue, Moraga Avenue, and Park Boulevard as traffic volumes increase. At the same time, technological changes (such as alternative fuel vehicles and quieter buses) may offset such increases.

Table 6.2: Summary of Short-Term Noise Measurements and Estimated Ldn, 2007						
Location and Time	Measured Noise Levels, dBA			Primary Noise		
	L ₁₀	L ₅₀	L ₉₀	L _{eq}	L _{dn}	Source (distance from centerline)
ST-A: Oakland Ave between Monte Vista and Olive 3:40-3:50 PM	63	58	48	60	60	Oakland Avenue (55 feet)
ST-B: Moraga Ave between Ramona and Monticello, 2:40-2:50 PM	69	61	49	65	66	Moraga Avenue (50 feet)
ST-C: Highland Ave between Moraga and Park Way, 2:00-2:10 PM	66	59	46	62	63	Highland Avenue (23 feet)
ST-D: Magnolia Ave between Bonita and Hillside, 2:20 and 2:30 PM	58	53	49	55	60	Magnolia Avenue (26 feet)
ST-E: Grand Ave between Cambridge and Oakland, 3:00-3:10 PM	67	60	51	63	64	Grand Avenue (35 feet)
ST-F: Linda Ave between Kingston and Lake, 3:30-3:30 PM	64	53	46	60	60	Linda Avenue (23 feet)
ST-G: Trestle Glen between Park Blvd and Cavanaugh, 12:40-12:50 PM	56	43	37	53	60	Trestle Glen Road (20 feet)

Source: Illingworth and Rodkin, based on data collected on June 7, 2007

Table 6.3: Comparison of Ldn Levels in 1994 and 2007				
	L _{dn} (dBA)			
Location	1994	2007		
Oakland Avenue near Olive	63	60		
Moraga Avenue near Ramona	66	66		
Highland Avenue near Moraga	69	65		
Magnolia Avenue near Hillside	62	60		
Grand Avenue near Oakland	71	77		
Linda Avenue near Kingston	65	62		
Trestle Glen Road near Park	56	62		

Source: Illingworth and Rodkin, 2007; Charles Salter Associates, 1994

Evaluating Noise Compatibility

The conventional way to determine noise compatibility is with three standards: *normally acceptable, conditionally acceptable,* and *normally unacceptable.* These are shown in Table 6.4 and are described below:

- Normally acceptable levels are those which would pose no threat to the specified use. Standard construction would reduce external noise so that the interior noise levels would not disrupt activities.
- Conditionally acceptable noise levels are those in which standard building construction would not be adequate to protect the use. Mitigation measures such as noise barriers, site design, or acoustical insulation could be employed to achieve acceptable sound levels.
- Normally unacceptable levels are those for which simple mitigation measures are not adequate. The specified land uses would not be appropriate in these areas without major noise attenuation measures.

Noise Compatibility Guidelines

Some land uses are considered to be more sensitive to noise impacts than others. According to the state General Plan Guidelines, these uses include hospitals, convalescent homes, schools, churches, sensitive wildlife habitat, and residential areas. Using this definition, virtually all of Piedmont would be considered "noise sensitive." Based on the city's current and expected future land use mix, particular care should be taken to address potential noise impacts from future commercial or mixed use development, park improvements, and school reconstruction. Additionally, existing high noise volumes along Grand Avenue suggest that special acoustical insulation may be needed for future development along this particular roadway.

Table 6.4 presents noise compatibility standards for different land uses in Piedmont. These standards are adapted from the state General Plan Guidelines. The table indicates the exterior noise levels that should be considered normally acceptable, conditionally acceptable, and normally unacceptable for each of the major land uses found in the city. Where exterior noise levels fall in the "conditionally acceptable" range, noise studies will typically be required before development is approved. Approval may be conditioned on mitigation measures which reduce interior noise to the standards in this table. This could include sound walls, tree planting, and other noise reduction measures on the part of the project sponsor.

Table 6.4: Recommended Maximum Noise Levels, dB (Ldn)					
Land Use	Interior	Exterior			
		Normally Acceptable	Conditionally Acceptable	Normally Unacceptable	
Low Density Residential	45	<60	60-70	>70	
Medium Density Residential	45	<65	65-70	>70	
Office	55	<65	65-75	>75	
Retail	60	<65	65-75	>75	
Schools/ Churches	45	<60	60-70	>70	
Parks and Playgrounds		<67	67-75	>75	

Source: State of California General Plan Guidelines, 2003. Barry Miller, AICP 2008

One of the most effective ways to reduce noise is to control it at the source. Examples of noise source controls include Piedmont's ban on private gas-powered leaf blowers, its building code standards for outdoor mechanical equipment, and its designation of certain streets as truck routes.

Mitigating Future Noise Impacts

Although Piedmont will remain a quiet community in the future, localized changes in noise levels will occur as homes are remodeled and expanded, new homes are built, and school and park facilities are constructed. Mitigation of noise impacts will sometimes be necessary. This can be accomplished by reducing noise at the source, modifying the path between noise source and noise receiver, and adjusting noise receivers.

Noise Source Controls

One of the most effective ways to reduce noise is to control it at the source. Examples of source controls include Piedmont's ban on private gas-powered leaf blowers, its building code standards for outdoor mechanical equipment, and its designation of certain streets as truck routes. Other examples include federal regulations for quieter aircraft and motor vehicle mufflers, and the use of quieter buses by AC Transit. The City will continue to implement noise source controls by regulating hours of play on athletic fields, regulating the hours of construction, and enforcing the Piedmont noise ordinance.

Noise Path Controls

The path that noise travels between its source and receiver provides an opportunity for reduction in volume. Typical noise barriers include sound walls, fences, berms, or dense plantings of shrubs and trees. Because Piedmont does not have freeways or high-volume arterials, sound walls have been unnecessary in the city. Landscaping and fences are used on private properties to absorb noise and provide buffering, effectively reducing sound and providing privacy in many locations.

Noise Receiver Controls

Adjusting the noise receiver is typically done through building design, and construction. Standard construction reduces noise levels from outside to inside by 10 to 20 dB. Additional reduction can be achieved through site planning—for example, by setting a building back from the street, placing mechanical equipment away from sleeping areas, and limiting the use of decks that face onto noisy streets. Noise levels can be substantially reduced by increasing wall mass and thickness, adding acoustical blankets, sealing cracks and edges, increasing glass thickness or using double glazed windows, using solid core doors instead of hollow doors, and through interior finishes such as carpeting, drapes, and acoustical ceiling tiles.

GOALS, POLICIES, AND ACTIONS

Goal 18: Geologic Hazards

Minimize the loss of life, personal injury, and property damage resulting from earthquakes, landslides, unstable soils, and other geologic hazards.

Policies and Actions

Policy 18.1: Restricting Development on Unstable Sites

Permit development only in those areas where potential danger to the health, safety, and welfare of Piedmont residents can be adequately mitigated.

Policy 18.2: Seismic Design Standards

Maintain and enforce seismic design and construction standards which meet or exceed the standards established by the Building Code. Piedmont's Municipal Code should be periodically reviewed, updated, and amended to incorporate the most current knowledge and highest standards of seismic safety.

Policy 18.3: Infrastructure Reliability

Maintain road and infrastructure design standards which address geologic conditions in Piedmont, including the potential for earthquakes and landslides. Infrastructure should be retrofitted where necessary to improve reliability during and after an earthquake.

Policy 18.4: Soil and Geologic Reports

Require site-specific soils reports and geologic studies in instances where development may be exposed to substantial geologic or seismic hazards, including ground shaking and landslides. Ensure that any identified hazards are appropriately mitigated.

Policy 18.5: Seismic Upgrades

Encourage the upgrading and reinforcement of homes, businesses, schools, and other public buildings to protect against future damage, injury, and loss of life in the event of a major earthquake. The City will encourage the mitigation of seismic deficiencies through bolting of structures to their foundations, lateral bracing of cripple walls, bracing of water heaters and potential falling objects, and similar measures. Structural hazards in public buildings should be mitigated based on the severity of risk and the type of occupancy.

Policy 18.6: Siting of Critical Facilities

Design and locate new critical facilities (**in addition to those outlined in Table E-1 of the LHMP**-) including schools, municipal offices, disaster supply containers, and emergency shelters, in a manner which maximizes their ability to remain functional after a major earthquake.

Policy 18.7: Earthquake Safety Education

Provide earthquake safety information to citizens, property owners, and volunteer groups.

Policy 18.8: Siting of New Developments (New Policy) Minimize risks from landslide by requiring new developments to be sited outside of hazards areas, when possible, and to incorporate design that minimizes the potential for damage.

Policy 18.9: Landslide Susceptibility Inspections (New Policy) Regularly inspect locations with high landslide susceptibility directly following major storm and atmospheric events.

- Action 18.A: Soil and Geotechnical Reporting Requirements Require soil and geotechnical reports for any structure constructed on a slope exceeding 20 percent, any application for a tentative subdivision map, and any new residence on any lot, regardless of slope.
- Action 18.B: Data Base of Geologic Reports
 Maintain any soil and geologic reports completed for development
 applications as public records. Keep records of the location and extent
 of areas covered by such reports and refer to these records as needed
 when future applications for development are made.
- Action 18.C: Incentives for Seismic Retrofits
 Consider a variety of incentives that encourage Piedmont residents to
 retrofit their homes for seismic safety. Incentives might include reduced
 fees for households seeking permits to replace brick foundations, install
 shear walls, or perform other seismic upgrades.
- Action 18.D: Post-Earthquake Structural Evaluation
 Continue the program providing for evaluation of structures following a
 major earthquake, and take appropriate actions in the event a structure
 is determined to be unsafe.

See also Action 3.A in the Land Use Element regarding the Measure E bond measure to seismically retrofit Piedmont's public schools.

Implement vegetation management programs which reduce the fuel load and potential for wildfire. This should include the removal of invasive fire-prone vegetation and the use of less flammable plants for landscaping, especially on hillside sites. Public education on "defensible space" and good vegetation management practices should be strongly promoted.

Goal 19: Wildfire-and, Flooding and Climate Change Hazards Reduce exposure to wildfire, flooding, and other climate-related

Policies and Actions

<u>Wildfire</u>

hazards.

Policy 19.1: Locate New and Existing Critical Facilities Outside of Very High Fire Hazard Severity Zones (New Policy) Protect and harden critical facilities from natural hazards and minimize interruption of essential infrastructure, utilities, facilities, and services.

Policy 19.2: Minimize Risk to New Residential Development in Very High Fire Hazard Severity Zones (New Policy)

Develop stringent initial site design and on-going maintenance standards incorporating adequate mitigation measures into individual developments to achieve an acceptable level of risk, considering the increased risk associated with wildland fire hazards due to climate change.

Policy 19.3: New Development Siting (New Policy)

<u>Require new development located along steep slopes and amidst rugged</u> terrain to be fire resistant and avoid contributing to rapid fire spread and or decreased accessibility for firefighting.

Policy 19.4: Density Management (New Policy)

Develop and implement density management strategies that cluster residential developments and minimize low-density exurban development patterns, or developments with undeveloped wildland between them, to reduce amounts of flammable vegetation and collective exposure to wildfire tisk.

Policy 19.5: Landscape Features (New Policy)

Site structures to maximize low-flammability landscape features to buffer against wildfire spread.

Policy 19.6: Development Water Systems (New Policy) Permit development only within areas that have adequate water resources available, to include water pressure, onsite water storage, or fire flows.

Policy 19.3Policy 19.7: Fire-Fighting Water Flow Ensure that Piedmont's water system remains adequate for fire fighting purposes.-Coordinate with East Bay Municipal Utility District to support the

maintenance and long-term integrity of adequate water supplies throughout the City and provision of adequate water storage to meet future peak fire demand during times of peak domestic demands. As funding allows, undertake improvements for areas where capacity is determined to be deficient.

Policy 19.8: Fire Protection (New Policy)

Require that new development have adequate fire protection, including proximity to adequate emergency services, adequate provisions for fire flow and emergency vehicle access and fire hardened communication, including high speed internet service.

Policy 19.9: Fire Protection Plans for New Development (New Policy) Require fire protection plans for all new development, including new development within VHFHSZs. Fire protection plans shall contain the following components:

- Risk Analysis
- Fire Response Capabilities
- Fire Safety Requirements Defensible Space, Infrastructure, and Building Ignition Resistance
- Mitigation Measures and Design Considerations for Non-Conforming Fuel Modification
- Wildfire Education, Maintenance, and Limitations
- Evacuation Planning

Policy 19.1Policy 19.10: Reducing Fire Hazards

Maintain building and development regulations that minimize the potential for damage, injury, or loss of life due to fire. Ensure that development is designed and constructed in a manner that minimizes the risk from fire hazards by increasing resistance of structure to heat, flames, and embers. Where appropriate, this should include the use of fire-resistant building materials, fire sprinklers, non-combustible roofing materials, and other fire suppression and risk-reduction measures. Review current building code standards and other applicable statutes, regulations, requirements, and guidelines regarding construction, and specifically the use and maintenance of risk reduction measures and consider adopting amendments to implement these standards.

Policy 19.11: Fire Hazard Reduction Around Buildings and Structures Regulations (New Policy)

Update the City's development standards to meet or exceed title 14, CCR, division 1.5, chapter 7, subchapter 2, articles 1-5 (commencing with section 1270) (SRA Fire Safe Regulations) and title 14, CCR, division 1.5, chapter 7, subchapter 3, article 3 (commencing with section 1299.01) (Fire Hazard

Reduction Around Buildings and Structures Regulations) for VHRHSZs. Minimize new development in VHFHSZs. All new construction in VHFHSZ's will require a Fire Protection Plan, Fire Safe Regulations, Home Hardening, two emergency access routes, and implementation of Public Resources Code 4290.

Policy 19.12: Fire Safe Regulations (New Policy)

Minimize risks to existing development by identifying existing nonconforming development to contemporary fire safe standards, in terms of road standards and vegetative hazard, and requiring all development to meet or exceed title 14 CCR, division 1.5, chapter 7, subchapter 2, articles 1-5 requirements (Fire Safe Regulations).

Policy 19.2Policy 19.13: Fuel Management and Public Education

ImplementRequire all properties in the city to enforce precautionary measures to create defensible space, including removing flammable vegetation management programs which reduce the and maintaining a fuel load and potential for wildfire. break around properties that meet or exceed the defensible space requirements of Public Resources Code 4291. This should include the removal of invasive fire-prone vegetation and the use of less flammable plants for landscaping, especially on hillside sites. PublicRequire ongoing maintenance and upkeep to be codified as part of building covenants or homeowner covenants, conditions, and restrictions. Piedmont Public Works should partner with the Oakland Fire Safe Council to promote public education on "defensible space" and good vegetation management practices should be strongly promoted.

Policy 19.3: Fire-Fighting Water Flow

Ensure that Piedmont's water system remains adequate for fire-fighting purposes. As funding allows, undertake improvements for areas where capacity is determined to be deficient.

Policy 19.14: Visible Street Signage (New Policy)

Require that all homes and businesses have visible street addressing and signage.

Policy 19.4Policy 19.15: Fire Department Review of Development Applications

Ensure that the Piedmont Fire Department reviews proposed development applications to verify that response times will be acceptable, emergency access will be adequate, water supply and fire flow will be sufficient, vegetation clearances will be maintained, and appropriate construction materials will be used.

Policy 19.16: Post-Fire Re-Development (New Policy)

In the event of a large fire, evaluate re-development within the impacted fire zone to conform to best practice wildfire mitigation.

Policy 19.17: Vegetation Clearance for Public and Private Roads (New Policy)

Establish and maintain community fuel breaks and fuel modification/reduction zones, including clearance alongside public and private roads. The Piedmont Public Works Department will work with Oakland Firesafe Council, and Cal Trans to ensure continued long-term maintenance of vegetation clearance on public and private roads. Educate residents on vegetation clearance standards and maintenance practices to ensure maintenance of private roads.

Policy 19.18: Education on Fire Hazard Reduction Strategies (New Policy)

Educate residents on fire hazard reduction strategies to employ on their properties and evacuation routes, focusing on the most vulnerable populations such as renters, elderly, disabled, and low-income residents.

Policy 19.19: Ensure Adequate Emergency Evacuation Routes (New Policy)

Ensure that all new residential development has at least two emergency routes.

Policy 19.20: Emergency Access (New Policy)

Ensure that the Piedmont Fire Department has complete access to all locations in the City, including gated residential communities and critical infrastructure.

Policy 19.21: Emergency Roadways (New Policy)

Maintain emergency roadways and improve them as necessary and appropriate to ensure they stay in operation during hazardous events.

Policy 19.22: Residential Neighborhood Engagement (New Policy) Prioritize engagement with residential neighborhoods that have evacuation constraints to encourage home retrofits to meet current standards on structure hardening, proactively enforce defensible space standards, and conduct emergency preparedness trainings.

Policy 19.23: Evaluate Evacuation Route Capacity (New Policy) Evaluate evacuation route capacity, safety, and viability under a range of emergency scenarios as part of the next update to the Piedmont Hazard Mitigation Plan. Review and revise evacuation related policies in the Safety

Element upon the revision of the Housing Element and LHMP, in accordance with Government Code Section 65302.15 (as amended by AB 747). Implement recommended mitigation measures to reduce evacuation constraints.

Policy 19.24: Underground Power Lines (New Policy)

<u>Coordinate with Pacific Gas & Electric to implement an electrical</u> <u>undergrounding plan with a focus on critical evacuation roadways and areas</u> <u>with highest wildfire risk.</u>

Policy 19.25: Restrict Parking (New Policy)

Restrict parking periodically (e.g., on red flag days) along critical evacuation routes.

<u>Policy 19.26: Telecommunications (New Policy)</u> Coordinate with telecommunication service entities to fire-harden communications.

Policy 19.27: Vulnerable Schools Wildfire Resilience (New Policy) Partner with the Renaissance International School and Corpus Christi School to increase structure hardening and implement emergency evacuation protocols to follow during a wildfire scenario.

Policy 19.28: Access and Fuel Management Coordination (New Policy) Coordinate with the City of Oakland Fire Department and the Oakland Fire Safe Council to improve emergency access and implement fuel load modification in Moraga Canyon.

Policy 19.29: Critical Facilities Hardening (New Policy) Evaluate all City critical facilities to prioritize structure hardening and retrofitting efforts to increase long-term resilience to wildfire.

Policy 19.30 Transportation Construction Plan. (New Policy)

Projects developers shall be required to prepare and implement a Transportation Construction Plan (TCP), which shall be approved by the City. The plan shall include the locations of material and equipment storage, trailers, worker parking, a schedule of site operations that may block traffic, and provisions for traffic control. The TCP shall include procedures for stopping construction in the event of an emergency and ensuring that emergency access and evacuation routes are not inhibited. The TCP shall ensure adequate emergency access and consistency with the California Fire Code and other development requirements as part of the development review process.

See policies in the Community Services and Facilities Element for additional guidance on Police and Fire Protection.

<u>Flooding</u>

Policy 19.30: Reduce Flood Damage (New Policy)

Reduce potential flood damage in areas of the city subject to flood conditions through Capital Improvement projects, the development review process, or other means as applicable.

Policy 19.31: Development Activities in Flood Prone Areas (New Policy) Require new development or expansion of existing development adjacent to canyons or valleys to assess potential environmental impacts from increased run-off and erosion and implement appropriate mitigation.

Policy 19.32: Implement CAP 2.0 (New Policy)

Implement all adaptation measures identified in the CAP 2.0 regarding addressing flooding risks, including the maintenance of storm drains across the city, encouraging green infrastructure, and restoring natural features of the watershed.

Policy 19.5 Policy 19.33: Keeping Flood Hazards Low

Maintain Piedmont's low potential for flooding through storm drain maintenance, preservation of creeks and drainage courses in their natural state, and periodic clearing of debris from storm drains and catchment basins. Ensure that new development does not increase the risk of off-site flooding, either in Piedmont or downstream in Oakland.

Policy 19.6 Policy 19.34: Managing Runoff

Ensure that runoff from individual properties is directed in a way that does not threaten adjacent properties. Runoff should be directed to places where it can be absorbed into the ground, detained in rain barrels or cisterns, or directed toward storm drains.

See also Policy 16.4 in the Natural Resources Element on the use of permeable pavement and limits on impervious surface coverage. See the Community Services and Facilities Element for additional policies on the storm drainage system.

Climate Change Hazards

Policy 19.35: Home Cooling (New Policy) Promote home cooling through retrofits to homes to better withstand extreme

heat and bad air quality days. Provide information about financial assistance programs to vulnerable households, including seniors and renters.

Policy 19.36: Water Conservation (New Policy) Continue to enforce updated State-mandated water conservation regulations.

Policy 19.37: Promote Water Conservation Efforts (New Policy) Provide educational materials and programs to support water conservation

efforts that consider extended drought conditions associated with climate change.

Policy 19.38: Resilient Water Supply (New Policy)

Pursue regional solutions with public and private partners including EBMUD to diversify the City's water supply through utilizing alternative sources, including recycled water.

Policy 19.39: Resilient Critical Facilities (New Policy)

<u>The City will evaluate selected locations for new critical facilities for</u> potential impacts from climate change hazards and implement mitigations and adaptations accordingly.

Policy 19.40: Implement CAP 2.0 Extreme Heat (New Policy)

Implement all adaptation measures identified in the CAP 2.0 regarding addressing risks of extreme heat, including the installation of increased tree and vegetation planting to reduce the urban heat island effect, and risks of grid outages, including the integration of energy assurance actions into citywide planning processes.

Policy 19.41: Resilience Hubs (New Policy)

Partner with Alameda County to host resilience hubs to better support the needs of vulnerable populations during extreme climate events, such as extreme heat days and smoke events, including, but not limited to health assistance and resources, food refrigeration, charging stations, basic medical supplies, and other emergency supplies.

Policy 19.42: Climate Resilient Landscaping (New Policy)

Facilitate the expanded establishment of climate resilient tree and plant species that are drought tolerant, resistant to pests and diseases, fire-retardant or fire-resistance, and heat tolerant by distributing and publishing guidance materials, updating code standards, and retrofitting City-owned parks and landscape strips and medians.

Policy 19.43: Extreme Heat Preparedness (New Policy)

Expand public outreach and warning systems to increase preparedness for extreme heat events.

Policy 19.44: Extreme Heat Protocols (New Policy)

Develop protocols to improve language appropriate outreach and assistance to vulnerable populations, including older adults and domestic workers, before and during extreme heat events.

Policy 19.45: Integration of Climate Projections and Impacts (New Policy)

Integrate and regularly update best available climate science, projections, and potential impacts into relevant City plans, codes, and planning documents including the Municipal Code and Capital Improvement Program.

Policy 19.46: Resilient Communities (New Policy)

Prepare for and adapt to the effects of climate change by considering climate change vulnerability in planning decisions, including those involving new public facilities and private development.

Policy 19.47: Climate Adaptation Planning Coordination (New Policy)

Coordinate with Alameda County and neighboring jurisdictions to prioritize climate adaptation efforts that address regional climate change vulnerabilities affecting community members, infrastructure and services, natural resources and ecosystems, and critical facilities and buildings.

Policy 19.48: Resilient Power at Critical Facilities (New Policy)

Invest in renewable back-up power sources and storage options to increase energy resilience at critical facilities during extreme heat events, wildfires, extreme precipitation events, or other scenarios that may trigger a power safety shutoff or outage.

Policy 19.49: Adapted Services (New Policy)

Coordinate with emergency services as well as utility providers to assess needed service improvements in providing increased redundancy and uninterrupted service for water, power, and emergency service response.

Actions

- Action-19.A: Mutual Aid Agreements
 Maintain mutual aid agreements for wildland fire protection with the
 City of Oakland and other East Bay jurisdictions.
- Action 19.B: Weed and Brush Abatement

Implement weed abatement and property inspection programs to identify and mitigate wildfire hazards.

<u>Action 19.C: Intergovernmental Coordination on Vegetation</u>
 <u>Management</u>

Implement recommended fire mitigation strategies from the Alameda County Community Wildfire Protection Plan including vegetation management for and around existing and new development.

Action 19.D: Educational Materials

Make available and promote educational materials for defensible space standards, or vegetation "clear zones," and vegetation compliance for all existing and new structures in areas that are designated by the California Department of Forestry and Fire Protection and Local Ordinance 15.60. as State Responsibility Areas or Very High Fire Hazard Severity Zones. In addition, make available educational materials on evacuation routes for all residential neighborhoods. Promote educational materials for elderly, disabled, and low-income residents.

- Action 19.E: Fire Suppression Guidelines Develop fire suppression water system guidelines and implementation plans for existing and acquired lands, including fire protection water volumes, system distribution upgrades, and emergency water storage.
- Action 19.F: Fire Sprinkler Requirements Consider a building code amendment that would require installation of sprinklers during major home remodels, for example, when more than 50 percent of a home's interior space is refurbished.
- Action 19.DG: Tyson Lake Dam Inspections
 Work with Tyson Lake Homeowners to obtain current information on the
 condition of the Tyson Lake dam, and receive notification and copies of
 reports when the dam is inspected.
- Action 19.EH: EBMUD Reservoir Retrofits
 Support EBMUD's efforts to seismically retrofit and/ or replace its
 reservoirs above Piedmont as a way to reduce the threat of flooding in
 the event of tank collapse. Minimize the visual impact of any replacement
 tanks constructed on the reservoir site.
- Action 19.F<u>I</u>: Drainage Improvements Require storm drainage improvements for any development or home improvement which could create or exacerbate the potential for flooding.

Development applications should be reviewed by the Public Works Department to ensure that such hazards are identified and mitigated.

<u>Action 19.J: Review New Essential Facilities</u>
 <u>The City will require review of new essential facilities and, as necessary, development of measures to avoid flood and fire hazard impacts.</u>

Action 19.K: Shade Structures

Complete an assessment to identify locations in Piedmont to implement shade structures to minimize the impacts of extreme heat vulnerable populations. Prioritize walking corridors, areas with lowest proportions of canopy coverage, areas most susceptible to the urban heat island effect, and areas that have population that could be most negatively impacted by heat (e.g., older adults and young children).

Action 19.L: Extreme Heat and Air Quality Monitoring
 Collaborate with the Alameda County Public Health Department and
 local community organizations to establish extreme heat and air quality
 monitoring systems and develop accessible and language appropriate
 community education resources to prepare community members for
 increased extreme heat events and air pollution.

- <u>Action 19.M: Retain Water Services during Extreme Heat Events</u>
 <u>Establish a lifeline program for vulnerable populations to sustain water</u>
 <u>services during high heat days.</u>
- Action 19.N: Resilient Buildings and Properties
 Conduct near-term and long-term climate hazard evaluations, such as
 for flooding and wildfire, for at-risk City facilities. Develop adaptation
 plans for at-risk buildings and facilities, and prioritize necessary
 retrofits or upgrades based on the age, vulnerability, and need of the
 City facility.

Minimize the use of toxic and hazardous materials. As feasible, residents should be encouraged to consider safer alternatives such as pesticide-free landscaping and nontoxic household cleaners and building materials. Information on proper methods of household hazardous waste disposal should be provided to Piedmont residents.

Goal 20: Hazardous Materials Minimize the potential for exposure to hazardous materials.

Policies and Actions

Policy 20.1: Hazardous Material Handling, Storage, and Disposal Require that the handling, storage, and disposal of hazardous materials complies with all applicable local, county, state, and federal laws. Where appropriate, clearance from the Piedmont Fire Department should be required before businesses licenses are issued.

Policy 20.2 Transport of Hazardous Material

Coordinate and cooperate with nearby cities, regional organizations, and environmental agencies in efforts to control hazardous materials and regulate the transport of hazardous materials on Piedmont streets.

Policy 20.3 Hazardous Building Materials

Work with property owners to remediate hazardous building materials such as asbestos, mercury, and lead. Ensure that any hazardous building materials removed during home renovations are properly handled and disposed.

Policy 20.4 Hazardous Material Land Uses

Maintain planning and zoning procedures which protect the public from possible exposure to hazardous chemicals. New uses which involve storage or handling of hazardous materials should be discouraged.

Policy 20.5: Household Hazardous Materials

Minimize the use of toxic and hazardous household products. As feasible, residents should be encouraged to consider safer alternatives, such as pesticide-free landscaping and non-toxic household cleaners and building materials. Information on proper methods of household hazardous waste disposal should be provided to Piedmont residents.

Policy 20.6: Underground Tanks

Ensure that any underground storage tanks containing hazardous materials are properly installed, used, removed, and monitored.

Policy 20.7: Hazardous Waste Sites Cleanup (New Policy)

Regulate development on sites with known contamination of soil and groundwater, according to maps herein or conclusions of a Phase II environmental report, to ensure that construction workers, future occupants, and the environment, as a whole, are adequately protected from hazards associated with contamination, and encourage cleanup of such sites. Provide documentation that development sites are not impacted by former/current site

uses, including but not limited to, agricultural chemicals, aerially deposited lead, common railroad contaminants, and hazardous material storage and/or use.

- Action 20.A: Fire Department First Responder Training Continue to train Piedmont Fire Department personnel in hazardous materials response.
- Action 20.B: Groundwater Monitoring Continue efforts to monitor groundwater plumes associated with leaking underground fuel tanks at local gas stations.
- Action 20.C: Household Hazardous Waste Disposal Education Continue to educate Piedmont residents on proper disposal of household hazardous wastes, including information on household hazardous waste collection and drop off locations. Develop programs to ensure proper disposal of compact fluorescent light bulbs (CFLs).
- Action 20.D: Participation in County HazMat Programs Support and participate in Alameda County's hazardous waste management planning programs. As needed, update local codes regulating the permitted use and storage of hazardous gases, liquids, and solids.

See also the Community Services and Facilities Element for additional policies on fire protection services.

See also the Natural Resources and Sustainability Element for additional policies on surface and ground water quality.

Goal 21: Emergency Preparedness Ensure that the City, the School District, and Piedmont residents and businesses are prepared for natural and man-made disasters.

Policies and Actions

Policy 21.1: Preparedness and the Community

Recognize the importance of communication and full community engagement to the success of all emergency preparedness strategies.

Policy 21.2: Emergency Preparedness Plan

Use the Standardized Emergency Management System as the basis for emergency planning. The City will maintain an emergency preparedness plan that identifies a chain of command and outlines the actions to be taken in the event of a disaster.

Policy 21.3: Preparedness Education and Citizen Training

Promote and coordinate public education on earthquake hazards and emergency preparedness. The City will continue to implement programs that advise the public of preparedness and post-disaster recovery measures, and will encourage volunteer citizen participation in disaster response.

Policy 21.4: Intergovernmental Preparedness Planning

Cooperate with other cities, regional organizations, and other public agencies to undertake emergency preparedness planning. <u>Collaborate with other</u> agencies and neighboring jurisdictions during future LHMP and emergency operations plan updates.

- Action 21.A: Police and Fire Emergency Training Take the steps necessary to ensure that Piedmont's Police and Fire Department maintain a high degree of readiness and that their facilities, equipment, and services remain operational after a major disaster. <u>Conduct emergency services training to improve emergency</u> <u>preparedness for Police and Fire personnel.</u>
- Action 21.B: <u>Multi-Functional HazardEmergency Operations</u> Plan Updates Periodically update Piedmont's <u>Multi-functional HazardEmergency</u> <u>Operations</u> Plan to respond to changing conditions and resources. The Plan should include provisions to coordinate City Department actions with volunteers.
- Action 21.C: Disaster Containers
 Provide emergency equipment and disaster containers to assist the
 Police and Fire Departments and citizen volunteers trained to respond to
 emergencies. These containers should be regularly maintained and
 replenished.
- Action 21.D: Citizen Preparedness Training Programs Continue to implement emergency preparedness and training programs for residents and neighborhood groups through the Piedmont Fire Department. Public awareness of these programs should be increased through email and other media and by linking preparedness to other City initiatives such as crime prevention and environmental sustainability.

Continue to implement emergency preparedness and training programs for residents and neighborhood groups through the Piedmont Fire Department. Public awareness of these programs should be increased through email and other media.

Encourage residents to participate in similar disaster preparedness programs in the City of Oakland.

- Action 21.E: Emergency Preparedness Drills
 Conduct periodic disaster drills to test the effectiveness of the City's
 emergency response procedures. Encourage the Piedmont Unified
 School District to conduct emergency drills, and to participate in City
 drills.
- Action 21.F: Emergency Vehicle Access Maintain on-street parking prohibitions where necessary to ensure adequate access to all properties by emergency vehicles <u>and adequate</u> <u>evacuation access</u>.

See the Community Services and Facilities Element for additional policies on Police and Fire Protection.

"The quiet neighborhoods are a

blessing."

- General Plan Survey Response

Goal 22: Noise Maintain the peace and quiet of Piedmont neighborhoods.

Policies and Actions

Policy 22.1: Noise Insulation for New Development

Design new development, including residential additions and remodels, in a way that reduces the potential for residents to be exposed to high levels of noise. Development along busy streets such as Grand Avenue and Oakland Avenue should include effective noise insulation measures for interior spaces.

Policy 22.2: Noise Reduction Measures

Require new development with the potential to create long-term increases in noise volumes to mitigate potential impacts. Noise reduction techniques, such as sound muffling devices, building orientation, buffers, landscaping, and acoustical barriers, should be used as appropriate.

Policy 22.3: Transportation Noise

Support efforts to mitigate the sources of transportation noise in the city, especially AC Transit buses and other motor vehicles.

Policy 22.4: Domestic Noise Controls

Maintain and enforce ordinances to reduce sources of domestic noise in the city, including residential construction and gasoline-powered yard equipment.

Policy 22.5: Outdoor Activity Noise

Maintain limits on the hours and extent of scheduled events at parks and athletic fields to maintain a peaceful environment in the residential areas around these facilities.

Policy 22.6: Non-Piedmont Noise Sources

Seek to reduce noise emanating from outside the city limits when it detrimentally affects Piedmont residents. This policy applies to such sources as the Oakland Rose Garden, Interstate 580, and Oakland and San Francisco International Airports.

Policy 22.7: Construction Noise Reduction (New Policy)

For projects within 500 feet of a noise sensitive land use and that involve subterranean parking, large excavation, construction over 18 months in duration, and/or the use of heavy-duty equipment, a Construction Noise Study prepared by a qualified noise expert shall be required. The Construction Noise Study shall characterize sources of construction noise,

quantify noise levels at noise-sensitive uses, and identify feasible measures to reduce noise exposure. The project shall incorporate the feasible measures identified in the study. Noise reduction techniques may include, but are not limited to, shielding and silencing construction equipment, enclosing and screening outdoor fixed equipment, placing construction staging areas away from noise-sensitive uses, using smart adjusting back-up alarms for mobile construction equipment, controlling worker radio noise, installing temporary sound barriers, designating a noise complaint response protocol, shall be used as appropriate.

Policy 22.8 Vibration Control Plan (New Policy)

For construction activities involving vibratory rollers and sonic pile drivers within 40 feet of a historic structure or impact pile drivers within 115 feet of a historic structure, or if an impact pile driver is used within 60 feet of an occupied structure, the applicant shall prepare a Vibration Control Plan prior to the commencement of construction activities. The Vibration Control Plan shall be prepared by a licensed structural engineer and shall include methods required to minimize vibration such as alternative installation methods for pile driving or vibration monitoring. The Vibration Control Plan shall also establish baseline conditions at potentially affected structures, provide shoring design to protect buildings and structures from damage, document damage at the conclusion of vibration generating activities, and include recommendations for repair if necessary.

Action 22.A: Noise Compatibility Guidelines

Follow the noise compatibility guidelines in Table 6.4 for future development. The table specifies the maximum noise levels that are normally acceptable, conditionally acceptable, and normally unacceptable for new development. If a project is in a "normally acceptable" noise contour, an increase in noise up to the maximum should not necessarily be allowed. The impact of a proposed project on existing land uses should be evaluated in terms of the potential for adverse community impacts, regardless. The noise compatibility guidelines are intended to apply to post-construction conditions and exclude construction-related noise.

Action 22.B: Acoustical Study Requirements On an ongoing basis, require acoustical studies for projects which could potentially elevate noise levels above the "normally acceptable" limits specified in Table 6.4, or introduce noise-sensitive uses in areas where the existing noise levels presently exceed the normally acceptable levels described in Table 6.4. Such analyses should be prepared by a qualified

acoustical consultant and should include sufficient sampling data to adequately describe existing and future conditions.

- Action 22.C: Playfield Hours of Operation
 Define and enforce hours of operation for Piedmont Sports Field,
 Coaches Playfield, Linda Playfield, Dracena Park, and any other
 athletic fields that may be developed during future years. Noise levels at
 city parks should be periodically monitored to ensure that limits on
 hours of operation are sufficient to maintain neighborhood peace and
 quiet.
- Action 22.D: Enforcement of Noise Regulations
 Enforce rules and regulations pertaining to noise, including the
 California Motor Vehicle Code and Chapter 12 of the Piedmont
 Municipal Code. Continue to implement the Title 24 noise standard of
 45 dBA L_{dn} in all habitable rooms.

LHMP Goals and Objectives

Goal 1: Minimize risk and vulnerability of the City of Piedmont to the impacts of natural hazards, and protect lives and reduce damage and losses to property, public health, economy, and the environment.

Policy 1.1:

Protect life and reduce exposure and hazard losses to City residents, businesses, vulnerable populations, and visitors.

Policy 1.2:

Increase community resiliency to the impacts of natural hazards and promote sustainable recovery from hazard events.

Policy 1.3:

Assure long term protection and resiliency of existing and future development/redevelopment from natural hazards, to include both public and private structures.

Policy 1.4:

Protect/harden critical facilities from natural hazards and minimize interruption of essential infrastructure, utilities, and services.

Policy 1.5:

Provide protection for architectural resources in the City.

Policy 1.6:

Plan for and prioritize measures to respond to and address potential shortand long- term hazard impacts associated with climate change.

Goal 2: Enhance public outreach, awareness, education, and preparedness for all hazards to minimize hazard related losses.

Policy 2.1:

Engage the community in disaster awareness and prevention education to reduce the risk and vulnerability of natural hazard impacts.

Policy 2.2:

Improve the communities' understanding of natural hazards and how to effectively be prepared and take action to mitigate the impacts of hazard events; Support and encourage public responsibility.

Policy 2.3:

Develop and target outreach and education for each hazard type and risk area and all City populations (e.g., vulnerable populations, schools, etc.)

Goal 3: Improve City's resiliency and capabilities to mitigate losses and to be prepared for, respond to, and recover from a disaster event.

Policy 3.1:

Maintain current service levels related to public safety.

Policy 3.2:

Maintain and improve communication capabilities to ensure redundancy.

Policy 3.3:

Enhance emergency services capabilities to address evacuation planning. Scheltering, and other associated efforts.

See Table 5-2: City of Piedmont's Mitigation Actions on Page 5-11 of the Local Hazard Mitigation Plan for specific actions in support of these LHMP goals.

